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Abstract

The set covering problem (SCP) calls for a minimum cost family of subsets from n given subsets, which together covers
the entire ground set. In this paper, we propose a local search algorithm for SCP, which has the following three charac-
teristics. (1) The use of 3-flip neighborhood, which is the set of solutions obtainable from the current solution by exchang-
ing at most three subsets. As the size of 3-flip neighborhood is O(n3), the neighborhood search becomes expensive if
implemented naively. To overcome this, we propose an efficient implementation that reduces the number of candidates
in the neighborhood without sacrificing the solution quality. (2) We allow the search to visit the infeasible region, and incor-
porate the strategic oscillation technique realized by adaptive control of penalty weights. (3) The size reduction of the prob-
lem by using the information from the Lagrangian relaxation is incorporated, which is indispensable for solving very large
instances. According to computational comparisons on benchmark instances with other existing heuristic algorithms for
SCP, our algorithm performs quite effectively for various types of problems, especially for very large-scale instances.
� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Problem definition and historical background

The set covering problem (SCP) is one of the representative combinatorial optimization problems. Given
the ground set of m elements i 2 M = {1, . . . , m}, n subsets Sj � M, j 2 N = {1, . . . , n}, and costs cj (>0)
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for subsets Sj, we want to choose a family of subsets Sj with the minimum total cost under the con-
straint that each element i 2 M is covered by at least one subset in the family. The SCP can be described
as follows:
SCP : minimize costðxÞ ¼
X
j2N

cjxj

subject to
X
j2N

aijxj P 1 8i 2 M ;

xj 2 0; 1f g 8j 2 N ;
where
aij ¼
1 ðif i 2 SjÞ;
0 ðotherwiseÞ:

�

It is understood that variable xj equals 1 if subset Sj is in the selected family and 0 otherwise.
The SCP has many practical applications, including bus, railway and airline crew scheduling [2,11,23],

location problems of facilities [24], and logical analysis of data [8]. It is known to be NP-hard in the strong
sense, and a number of exact and heuristic algorithms have been proposed in the literature.

Among exact branch-and-bound algorithms, Fisher and Kedia proposed an exact branch-and-bound
algorithm based on a dual heuristic, and solved SCP instances with up to 200 rows and 2000 columns
[15]. Beasley combined a Lagrangian-based heuristic, feasible solution exclusion constraints and Gomory
f-cuts, and improved the branching strategy to enhance his previous algorithm [4]. This algorithm could
solve instances with up to 400 rows and 4000 columns [6].

Approximate algorithms have also been extensively studied [1,5,7,9–11,17,21]. Brusco et al. [9,21]
developed simulated annealing algorithms, Beasley and Chu [7] presented a genetic algorithm, and Ceria
et al. [11] presented a Lagrangian-based heuristic for solving very large-scale instances. Caprara et al.
[10] combined a Lagrangian-based heuristic and greedy algorithm, and obtained impressive results for var-
ious types of instances, especially for very large-scale instances with up to 5000 rows and 1,000,000 col-
umns. All these algorithms can be thought of as based on local search, in which the 1-flip neighborhood
(i.e., the set of solutions obtainable by adding a subset to or deleting a subset from the current family)
is used.

1.2. General ideas for the proposed algorithm

In the local search, how to define the neighborhood is crucial. For a positive integer r, let the r-flip neigh-
borhood of a solution x = (x1, . . . , xn) be the set of solutions obtainable by flipping at most r variables of x.
To our knowledge, most of the previous heuristic algorithms for SCP use 1-flip neighborhood. In this
paper, we propose a local search algorithm with 3-flip neighborhood. As the size of 3-flip neighborhood
is O(n3), which is much larger than that of 1-flip neighborhood, the search in the 3-flip neighborhood
becomes quite expensive if it is conducted without deliberate consideration. To overcome this, we propose
an implementation that effectively reduces the number of candidates in the neighborhood without sacrific-
ing the solution quality.

We also incorporate a strategic oscillation mechanism [16,19], to guide the search between feasible and
infeasible regions alternately (i.e., to intensify the search around the boundary of feasible region). Call a
feasible solution x minimal if it becomes infeasible by flipping any variable xj with xj = 1. An optimal solu-
tion for SCP is always minimal, and strategic oscillation may be understood as a tool to search minimal
solutions effectively. The alternate use of greedy and stingy methods, used by Feo and Resende [13] and
Jacobs and Brusco [21], is a simple form of the strategic oscillation. It consists of two phases, constructive
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phase and destructive phase. In the constructive phase, a feasible solution is constructed by using the greedy
method, and in the destructive phase the stingy method is used to obtain a minimal solution or an infeasible
solution. In our algorithm, the strategic oscillation is realized in a more sophisticated manner. The search
into the infeasible region is guided by an infeasibility measure evaluated by the penalized objective function,
which is defined to be the sum of cost(x) and the penalty weights pi (> 0) for those i 2 M not covered by x.
The penalty weights pi in the objective function are then adaptively controlled to intensify the search
around the boundary between feasible and infeasible regions.

In addition, in order to handle very large-scale instances, we reduce the problem size by fixing some vari-
ables xj to 0 or 1 on the basis of the information obtained from Lagrangian relaxation of SCP, where the set
of fixed variables is heuristically adjusted during the algorithm. The information from Lagrangian relaxa-
tion is also used to control the search in the neighborhood. This type of heuristic size reduction is indispens-
able for tackling large instances as confirmed in [10,11].

1.3. Outline of the proposed algorithm

The proposed algorithm consists of two phases, the phase of local search and the phase of fixing vari-
ables. In both of these phases, the information from the Lagrangian relaxation problem is used, for which
we need to solve the Lagrangian dual problem. For this purpose, we use the subgradient method. The relax-
ation and the subgradient method will be explained in Section 2.

The phase of local search is always applied to the instances whose sizes have been reduced in the phase of
fixing variables. The search order in the neighborhood is controlled by using the information in the last call
of the subgradient method of Lagrangian relaxation. As mentioned above, solutions are evaluated by the
penalized objective function. Whenever the local search stops at a solution because the penalized objective
value can not be improved, the penalty weights are updated and the local search resumes from the solution
found in the previous local search. Thus the local search is executed many times, thereby realizing the stra-
tegic oscillation. The phase of local search is terminated if a sufficient number of local search iterations has
been completed (the concrete rule for this is slightly complicated and will be explained in Section 5.2). The
local search will be explained in Section 3, and how we update the penalty weights will be explained in
Section 4.

The phase of fixing variables has two stages, the initial fixing stage and the modification stage. In the
first stage, the subgradient method is applied to the Lagrangian dual of the given instance, and the infor-
mation from the obtained solution is used to fix some variables xj to 0. Then, whenever the phase of
local search (applied to the reduced instance) stops, the set of fixed variables are heuristically adjusted
by calling the modification stage of the phase of fixing variables. In the modification stage, a set N1 of
indices of variables xj is chosen by analyzing the solution obtained in the previous phase of local search,
and the subgradient method is applied to the Lagrangian dual of the instance in which variables xj,
j 2 N1, are fixed to 1. Then the information from the obtained solution to the Lagrangian dual is used
to modify the set of variables xj to be fixed to 0. The phase of fixing variables will be explained in
Section 5.

The algorithm starts with the initial fixing stage, and then the phase of local search and the modification
stage are alternately repeated until a global stopping criterion is satisfied.

1.4. Computational results

Finally we carried out computational experiment on various benchmark instances. The results show that
our algorithm is quite effective, compared with other existing algorithms. Our algorithm could obtain the
best solutions for almost all the tested instances. In particular, better solutions are found for four of the
very large-scale instances [10] having up to 1,000,000 variables.
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2. Lagrangian relaxation and the subgradient method

The information from the Lagrangian relaxation of SCP is used to reduce the problem size, and to con-
trol the search in the neighborhood. Though the contents in this section are well-known, we briefly sum-
marize the basic ideas to keep the paper self-contained. In Section 2.1, we give the definition of
Lagrangian relaxation problem, and in Section 2.2, we explain the subgradient method to find an approx-
imate solution to the Lagrangian dual problem.

2.1. Lagrangian relaxation problem

The Lagrangian relaxation of SCP for a given Lagrangian multiplier vector u 2 Rm
þ (R+ is the set of non-

negative real numbers) is defined as follows:
LR-SCPðuÞ : LðuÞ ¼ min
x2f0;1gn

X
j2N

cjxj þ
X
i2M

ui 1�
X
j2N

aijxj

 !

¼ min
x2f0;1gn

X
j2N

cjðuÞxj þ
X
i2M

ui;
where cjðuÞ ¼ cj �
P

i2M aijui is the relative cost (or reduced cost) associated with j. For any u 2 Rm
þ, L(u)

gives a lower bound on the optimal value of problem SCP; i.e., L(u) 6 cost(x) holds for any u 2 Rm
þ and

any feasible solution x. An optimal solution to LR-SCP(u), denoted by x(u), is obtained by setting
xj (u) := 1 (respectively, 0) if cj (u) < 0 (respectively, if cj (u) > 0) and choosing the value of xj (u) from 0
or 1 arbitrarily if cj (u) = 0. In other words, L(u) is given by LðuÞ ¼

P
j2N minfcjðuÞ; 0g þ

P
i2M ui.

The Lagrangian dual problem LD-SCP asks to find a Lagrangian multiplier vector u� 2 Rm
þ that maxi-

mizes L(u) and is defined by
LD-SCP : maxfLðuÞ j u 2 Rm
þg:
As problem LR-SCP(u) has the integrality property (i.e., its linear programming relaxation has an integer
optimal solution), any optimal solution u* to the dual of the LP relaxation of SCP
LPD-SCP : maximize
X
i2M

ui

subject to
X
i2M

uiaij 6 cj 8j 2 N ;

ui P 0 8i 2 M ;
is also an optimal solution to the Lagrangian dual problem [14]. If a good Lagrangian multiplier vector u is
obtained, the relative cost cj(u) gives a reliable information on the attractiveness of letting xj = 1, because
each j with xj = 1 in an optimal solution of SCP tends to have a small cj(u) value.

2.2. The subgradient method

As discussed in Section 2.1, any optimal solution u* to LPD-SCP is an optimal solution to LD-SCP;
however, computing such u* directly is usually quite expensive, especially for very large-scale instances.
A common approach to compute an approximate u* is the subgradient method [3,14,20]. It uses the sub-
gradient vector s(u) 2 Rm, associated with a given u, defined by siðuÞ ¼ 1�

P
j2N aijxjðuÞ for all i 2 M. This

method generates a sequence u(0), u(1), . . . , where u(0) is a given initial vector, and u(k+1) is updated from u(k)

by the following formula:



Fig. 1. The greedy algorithm.
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uðkþ1Þ
i :¼ max uðkÞi þ k

UB� LðuðkÞÞ
ksðuðkÞÞk2

siðuðkÞÞ; 0

( )
8i 2 M ;
where UB is an upper bound on cost(x), and k P 0 is a parameter, called the step size.
Various implementations of the subgradient method are possible; however, when large instances are

solved, the computational time spent on this method becomes very large if a naive implementation is used.
We therefore use the sophisticated implementation proposed in [10]. Let us denote the subgradient method
using an upper bound UB and starting from the initial vector u(0) as SUBGRADIENT(UB, u(0)), which re-
turns the best Lagrangian multiplier vector found during its iteration. In our algorithm, procedure SUB-
GRADIENT(UB, u(0)) is called many times. In the first call, we set uð0Þi ¼ minfcj=jSjj i 2 Sjg ð8i 2 MÞ,
and in other calls, we set u(0) = u+, where u+ is the Lagrangian multiplier vector obtained by the first call
of SUBGRADIENT(UB, u(0)).

Though UB is usually set to the incumbent value (i.e., the cost of the best feasible solution obtained dur-
ing the search so far), UB is unknown in the first call of SUBGRADIENT(UB, u(0)). Then we initialize UB
by UB :¼ cost(x) for the feasible solution x obtained by the well known greedy method [2,3], which is
described in Fig. 1.
3. Local search with the 3-flip neighborhood

In this section, we propose an efficient search method for the 3-flip neighborhood. The main idea is
to reduce the number of candidates in the neighborhood. (For simplicity, we explain the method
assuming that it is applied to the original instance of SCP, though it is usually applied to the reduced
instances.)

3.1. The local search, search space and the neighborhood

The local search starts from an initial solution x and repeats replacing x with a better solution in its
neighborhood NB(x) until no better solution is found in NB(x). A solution x is called locally optimal, if
no better solution exists in NB(x).

In our algorithm, we allow the search to visit infeasible region. In this case, the objective function itself is
not appropriate to evaluate the quality of solutions. Instead, we use the following penalized cost function.
Let pi (> 0) be a penalty weight for each i 2 M. A solution x is evaluated by
pcostðxÞ ¼
X
j2N

cjxj þ
X
i2M

pi max 1�
X
j2N

aijxj; 0

( )
:

The penalty weights pi are adaptively controlled, as will be explained in Section 4. We emphasize at this
point that pcost(x) and cost(x) are both used in our algorithm.
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Remark. One might think that using a good Lagrangian multiplier vector u* as the penalty weight
p = (p1, . . . , pm) would work. As this idea is quite natural, we tried this first; however, we found that the
Lagrangian multipliers tend to be too small for this purpose.

For a positive integer r, the r-flip neighborhood NBr(x) is defined by
NBrðxÞ ¼ fx0 2 f0; 1gn j dðx; x0Þ 6 rg;

where
dðx ; x0Þ ¼ jfj 2 N j xj 6¼ x0jgj
is the Hamming distance between x and x 0. In other words, NBr(x) is the set of solutions obtainable from x
by flipping at most r variables. In our algorithm, the r is set to 3.

Since the region searched in one application of the local search is limited, the local search is usually ap-
plied many times. When a locally optimal solution is obtained, the standard strategy of our algorithm is to
update penalty weights and to resume the local search from the obtained locally optimal solution.

3.2. Efficient implementation of the neighborhood search

Our procedure finds a better solution in the 3-flip neighborhood of a solution x or concludes that x is
locally optimal. For convenience, let
n0 ¼
X
j2N

xj;

t ¼ max
X
i2M

aij

�����j 2 N

( )
;

l ¼ max
X
j2N

aij

�����i 2 M

( )
;

where n 0 denotes the number of variables which are equal to 1, t denotes the maximum number of elements
in one subset Sj, and l denotes the maximum number of subsets covering one element. They always satisfy
n 0 6 n, t 6 m and l 6 n, and in most cases n 0 � n, t� m and l� n hold. For a vector x 2 {0,1}n and a
subset J�N, define xlJ by
x l J ¼ ðx01; . . . ; x0nÞ () x0j ¼
1� xj ðif j 2 JÞ;
xj ðotherwiseÞ;

�

which is the vector obtained from x by flipping the variables in J. We denote the increase in pcost(x) by
Dpcostðx ; JÞ ¼ pcostðx l JÞ � pcostðxÞ:

We also define
hðjÞi ðxÞ ¼
1 ðif

P
j2N

aijxj ¼ jÞ;

0 ðotherwiseÞ

(

for i 2 M and j = 0,1, . . . , l, which is the indicator function representing whether element i is covered by j
subsets in the solution x.

In order to improve efficiency, we search the solutions in NBr(x)nNBr�1(x) for r = 2 and 3, in this order,
only if x is locally optimal with respect to NBr�1(x). Let one-round be the computation needed to find
an improved solution in the neighborhood or to conclude that the current solution is locally optimal. If
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implemented naively, the local search with NBr(x) requires O(nrt) one-round time for r P 1. In our algo-
rithm to be described below, one-round time is reduced to O(n + tl) for NB1(x), O(n 0tl) for NB2(x)nNB1(x)
and O(n 0tl min{n, tl}) for NB3(x)nNB2(x). As n 0 6 n and l 6 n always hold, these orders are not worse than
those of naive implementation, and are much better if n 0 � n or l � n holds.

In our implementation, we compute hðjÞi ðxÞ and Dpcost(x,{j}) in O(1) time for each j 2 N, i 2 M and
j = 0, 1, 2, . . . , l. For this, all the values of

P
j2N aijxj and Dpcost(x,{j}) are stored in memory. Let hi (respec-

tively, pj) denote the value of
P

j2N aijxj (respectively, Dpcost(x,{j})) stored in memory for the current solu-
tion x.

Given an initial solution x, initializing the values of hi for all i 2 M is possible in
Oðmþ

P
j2N jSjjxjÞ ¼ Oðmþ n0tÞ time, by first initializing hi :¼ 0 for all i 2 M and then executing

hi :¼ hi + 1 for each i 2 Sj and j 2 N with xj = 1. When x is modified to x l J, the values of hi are updated
in Oð

P
j2J jSjjÞ ¼ OðtjJ jÞ time in a similar manner. Since J 6 r = 3 holds, this time complexity is O(t).

Given an initial solution x and penalty weights pi for all i 2 M, pj are initialized by
pj :¼
�cj þ

P
i2Sj

pih
ð1Þ
i ðxÞ ðif xj ¼ 1Þ;

cj �
P
i2Sj

pih
ð0Þ
i ðxÞ ðotherwiseÞ

8>><
>>:
for all j 2 N. The required computational time for all j 2 N is Oð
P

j2N jSjjÞ ¼ OðntÞ. The time for this ini-
tialization is negligible, since it is necessary only if x is initialized or weights pi are changed, which does not
happen so often. The values of pj, j 2 N, are then updated if x is changed to xlJ. Note that the value of pj is
not changed if one of the following two conditions holds for j 2 NnJ:

(1) xj = 1 and hð1Þi ðxÞ ¼ hð1Þi ðx l JÞ for all i 2 Sj;
(2) xj = 0 and hð0Þi ðxÞ ¼ hð0Þi ðx l JÞ for all i 2 Sj.

That is, we update only those pj relevant to the flip. We call the algorithm to update pj UPDATE(x, J),
which is described in Fig. 2.

Since jJj 6 r = 3 holds, the time complexity of Steps 1 and 2 is O(t). In Step 3, jfi 2 M j hð0Þi ðxÞ ¼
1 and hð0Þi ðx l JÞ ¼ 0gj ¼ OðtÞ holds, because such i belongs to [j2JSj. Furthermore, as j{j 2 NnJjxj = 0
Fig. 2. Algorithm to update pj.
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and i 2 Sj}j = O(l) holds, the time for Step 3 is O(tl). Similarly, Steps 4–6 are computed in O(tl) time.
Therefore the total time of UPDATE (x, J) is O(tl).

3.2.1. Searching 1-flip neighborhood

We first describe how to search NB1(x). We use the information from the Lagrangian relaxation LR-
SCP(u). It is known that subsets Sj in an optimal solution tend to have small cj(u) values if a good Lagrang-
ian vector u is chosen. An algorithm to find such u was already explained in Section 2.2.

The algorithm to search NB1(x), called 1-FLIP(x), is as follows. We first search for an improved solution
obtainable by flipping an xj from 0 to 1 by searching a j satisfying xj = 0 and pj < 0. If such candidates
exist, we choose a j with the minimum cj(u). Otherwise, we search for an improved solution obtainable
by flipping an xj from 1 to 0 by searching a j satisfying xj = 1 and pj < 0. Then we update the values of
relevant pj if an improved solution was found. The details of algorithm 1-FLIP(x) is summarized in Fig. 3.

As the size of NB1(x) is O(n), the time complexity of Steps 1 and 2 is O(n). If a better solution is found, pj

is updated by calling UPDATE(x, {j*}) in O(tl) time in Step 3. Therefore the computational time of algo-
rithm 1-FLIP(x) is O(n + tl).

Remark. In Step 2 of algorithm 1-FLIP(x), we choose j* randomly. As we choose a j* that minimizes cj(u)
in Step 1, a natural rule in Step 2 would be to choose a j* that maximizes cj(u) (i.e., a symmetric rule as in
Step 1). We also tried this rule, but it did not work well. The motivation of randomly choosing j* is
explained as follows. Step 2 is executed when {j 2 Njxj = 0, pj < 0} = ; and {j 2 Njxj = 1, pj < 0} 5 ;
hold. This situation usually happens just after the penalty weights pi are reduced by the adjustment
algorithm in Section 4. In such a case, the penalty weights are reduced by relatively large amounts to
diversify the search. Our rule was adopted to help the diversification of the search.
3.2.2. Searching 2-flip neighborhood

To search neighborhood NB2(x)nNB1(x), we derive conditions that reduce the number of candidates
without sacrificing the solution quality. Our algorithm is based on the following two lemmas.

Lemma 1. Suppose that a solution x is locally optimal with respect to NB1(x). Then Dpcost(x,{j1, j2}) < 0
holds only if xj1

6¼ xj2
.

Proof. See Appendix A. h

Lemma 2. Suppose that Dpcost(x,{j1}) P 0, Dpcost(x,{j2}) P 0 and xj1
6¼ xj2

hold. Then Dpcost(x, {j1, j2}) <
0 holds only if fi 2 Sj1

\ Sj2
j hð1Þi ðxÞ ¼ 1g 6¼ ;.
Fig. 3. Algorithm to search NB1(x).
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Proof. See Appendix B. h

By Lemmas 1 and 2, the search in NB2(x)nNB1(x) can be restricted to solutions xl{j1,j2} satisfying
xj1

5xj2
and fi 2 Sj1

\ Sj2
j hð1Þi ðxÞ ¼ 1g 6¼ ;. Therefore we only generate such candidates and evaluate their

pcost. The algorithm to search NB2(x)nNB1(x), called 2-FLIP(x), is formally described in Fig. 4. Roughly
speaking, algorithm 2-FLIP(x) is realized as follows. For each ~| with x~| ¼ 1, we flip x~| to 0 temporarily, call
UPDATE(x,f~|g), and then check Dpcostðx; f~|; jg) for all j whose pj have changed during the call to
UPDATEðx; f~|gÞ.

In algorithm 2-FLIP(x), the set ff~|; jg j ~| 2 X and j 2 C~|g for the X defined in Step 1 includes all pairs of
j1 and j2 satisfying xj1

6¼ xj2
and fi 2 Sj1

\ Sj2
j hð1Þi ðxÞ ¼ 1g 6¼ ;. Therefore algorithm 2-FLIP(x) always finds

a solution in NB2(x)nNB1(x) that improves pcost(x), if such a solution exists.
We now evaluate the time complexity of algorithm 2-FLIP(x). Since the number of subsets covering an

element i 2 S~| is O(l) and jS~|j 6 t holds, we obtain jC~|j ¼ Oðminfn; tlgÞ. For all ~| and j, we have
Dpcostðx ; f~|; jgÞ ¼ Dpcostðx; f~|gÞ þ Dpcostðx l f~|g; fjgÞ:
Since Dpcostðx; f~|gÞ is stored in p~|, it is retrieved in O(1) time. Then Dpcostðx l f~|g; fjgÞ for all j 2 C~| is
computed in O(tl) time by using algorithm UPDATE(x; f~|g) (i.e., Dpcostðx l f~|g; fjgÞ ¼ pj holds for all
j 2 N after applying UPDATE(x; f~|g)). Therefore, the time to compute Dpcostðx; f~|; jgÞ for all j 2 C~| in
Step 3 is O(tl). The computational time in Step 4 is O(tl) since j C~| j¼ OðtlÞ holds. After Step 4, we
update the values of pj, j 2 N, to Dpcost(x, {j}) by using UPDATE(x l f~|g; f~|g), which takes O(tl) time.
The time to update pj with UPDATE(x; f~|; |̂g) in Step 5 is O(tl). As jXj = O(n 0) holds for the X in Step
1, the number of repetitions of Steps 2–4 is O(n 0). Therefore the total time of algorithm 2-FLIP(x) is
O(n 0tl).

3.2.3. Searching 3-flip neighborhood

To search NB3(x)nNB2(x) efficiently, we first derive conditions that reduce the number of candidates
without sacrificing the solution quality.

Lemma 3. Suppose that x is locally optimal with respect to NB1(x). Then Dpcost(x, {j1, j2, j3}) < 0 holds only

if xj1
6¼ xj2

or xj2
6¼ xj3

holds.

Proof. See Appendix C. h
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Lemma 4. Suppose that x is locally optimal with respect to NB2(x), and xj1
6¼ xj2

or xj2
6¼ xj3

holds. We

assume xj1
¼ 1 and xj2

¼ 0 without loss of generality. Then Dpcost(x, {j1, j2, j3}) < 0 holds only if one of the

following two conditions holds:
(1) xj3
¼ 1; fi 2 Sj1

\ Sj2
j hð1Þi ðxÞ ¼ 1g 6¼ ; and fi 2 Sj2

\ Sj3
j hð1Þi ðxÞ ¼ 1g 6¼ ;;

(2) xj3
¼ 0; fi 2 Sj1

\ Sj2
n Sj3

j hð1Þi ðxÞ ¼ 1g 6¼ ; and fi 2 Sj1
\ Sj3

n Sj2
j hð1Þi ðxÞ ¼ 1g 6¼ ;.

Proof. See Appendix D. h

By Lemmas 3 and 4, the search in NB3(x)nNB2(x) can be restricted to the solutions xl{j1, j2, j3} satisfying
one of the conditions (1) and (2) of Lemma 4. Therefore we only generate such solutions and evaluate their
pcost. The algorithm to search NB3(x)nNB2(x), called 3-FLIP(x), is formally described in Fig. 5. The algo-
rithm may seem complicated, but the basic idea of realizing it is similar to algorithm 2-FLIP(x) and is
roughly explained as follows. For each ~| with x~| ¼ 1, we flip x~| to 0 temporarily and call UPDATE(x; f~|g);
then flip xj 0 with x0j ¼ 0 to 1 temporarily and call UPDATE(x l f~|g; fj0g) for each j 0 whose p0j has changed
during the call to UPDATE(x; f~|g); and then check Dpcostðx; f~|; j0; jgÞ for all j whose pj have changed
during the call to UPDATE(x l f~|g; fj0g).

In algorithm 3-FLIP(x), the set ff~|; j0; jg j ~| 2 X ; j0 2 C~| and j 2 Dj0 g (for the X defined in Step 1 and
the C~| defined in Step 3) includes the set of {j1, j2, j3} that satisfy condition (1) of Lemma 4. Similarly
the set ff~|; j0; jg j ~| 2 X ; j0 2 C~| and j 2 C~|g includes the set of {j1, j2, j3} that satisfy condition (2) of Lemma
4. Therefore algorithm 3-FLIP(x) always finds a solution in NB3(x)nNB2(x) that improves pcost(x), if such
a solution exists.

We now consider the computational time of algorithm 3-FLIP(x). As in Section 3.2.2, |X| = O(n 0) and
jC~|j ¼ Oðminfn; tlgÞ hold. For any ~|, j 0 and j, we have
Dpcostðx ; f~|; j0; jgÞ ¼ Dpcostðx; f~|gÞ þ Dpcostðx l f~|g; fj0gÞ þ Dpcostðx l f~|; j0g; fjgÞ:
Fig. 5. Algorithm to search NB3(x).
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Since Dpcostðx; f~|gÞ is stored in p~|, it is retrieved in O(1) time. Then Dpcostðx l f~|g; fj0gÞ and
Dpcostðx l f~|; j0g; fjgÞ for all j 2 C~| [ Dj0 are computed in O(tl) time by calling UPDATE(x; f~|g) and UP-
DATE(x l f~|g; fj0g) (i.e., Dpcostðx l f~|g; fj0gÞ ¼ pj0 holds for all j 2 N after applying UPDATE(x; f~|g),
and Dpcostðx l f~|; j0g; fjgÞ ¼ pj holds for all j 2 N after applying both UPDATE(x; f~|g) and UP-
DATE(x l f~|g; fj0g)). Therefore the time to compute Dpcostðx; f~|; j0; jgÞ in Step 5 is O(tl). Computational
time in Step 6 is O(tl), since jC~| [ D0jj ¼ OðtlÞ holds. After Step 6, we update all pj to Dpcost(x, {j}) by calling
UPDATE(x l f~|; j0g; f~|; j0g), which takes O(tl) time. The time to update pj by calling UPDATE(x; f~|; j0; |̂g)
in Step 7 is O(tl). Therefore the total time of algorithm 3-FLIP(x) is Oðn0tl minfn; tlgÞ.

3.3. Additional rules to speed up the local search

Though the local search with a large neighborhood is effective in finding better solutions, the computa-
tional time often becomes excessive even after the reduction of Section 3.2. Therefore the neighborhood size
is further reduced depending on the current solution x. Let LB be the lower bound for the objective value of
SCP obtained from Lagrangian relaxation LR-SCP(u). We restrict the neighborhood to NB2(x) if cost(x) <
LB holds (in this case x is always infeasible); otherwise we use NB3(x). In case of cost(x) < LB, x is usually
far from the feasible region and it is unlikely that good feasible solutions exist around x.

Furthermore we forbid the search to visit solutions x 2 {0,1}n with cost(x) P UB, where UB is the
incumbent value (i.e., the cost of the best feasible solution obtained during the search so far), since the
possibility of finding a better feasible solution in such region seems small.

As a result of these additional rules, the obtained solution may not be locally optimal. However, it was
observed in our experiment that the solution quality did not degrade much and the overall performance (in
terms of both solution quality and computational time) was improved, since more iterations of local search
become possible by such speed up.
4. Adaptive control of penalty weights

Let xprev denote the solution at which the previous local search stops. In our algorithm, when the local
search stops at solution xprev, it resumes from xprev after updating penalty weights pi (in order to realize
strategic oscillation). Starting from the following initial values:
pi :¼ minfcj j i 2 Sjg 8i 2 M ; ð1Þ
the weights pi are updated as follows. If
costðx prevÞ < UB and fx 2 NB1ðxprevÞ j pcostðxÞ < pcostðxprevÞ and costðxÞP UBg ¼ ; ð2Þ
hold, pi are updated by
pi :¼ pið1þ hð0Þi ðx prevÞmaxfdþðxprevÞ; eþgÞ 8i 2 M : ð3Þ

Otherwise, pi are updated by
pi :¼ pið1�maxfd�ðx prevÞ; e�gÞ 8i 2 M : ð4Þ

Here e+ (> 0) and e� (> 0) are program parameters, and d+(xprev) and d�(xprev) are the step sizes defined by
the following rules. Let
dþNB1
ðx prevÞ ¼ min

Dpcostðxprev; fjgÞP
i2Sj

pih
ð0Þ
i ðxprevÞ

xprev
j ¼ 0 and

X
i2Sj

pih
ð0Þ
i ðxprevÞ > 0

�����
)(
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dþNB2
ðxprevÞ ¼ min

Dpcostðxprev; fj1; j2gÞP
i2Sj2

pih
ð0Þ
i ðxprevÞ

������xprev
j1
¼ 1; xprev

j2
¼ 0;

X
i2Sj2

pih
ð0Þ
i ðxprevÞ > 0

8<
:

and Dpcostðxprev; fj1; j2gÞP 0

9=
;

and d+(xprev) is given by
dþðx prevÞ :¼ ð1þ bþÞminfdþNB1
ðxprevÞ; dþNB2

ðxprevÞg;
where b+ (> 0) is a program parameter. Let jk 2 N (k = 1, 2, . . . , n 0) be those indices satisfying xprev
jk
¼ 1.

Then let
d�k ðx prevÞ ¼ Dpcostðxprev; fjkgÞP
i2Sjk

pih
ð1Þ
i ðxprevÞ

8>><
>>:

9>>=
>>;; k ¼ 1; 2; . . . ; n0;
where jk are ordered so that
d�1 ðx prevÞ 6 d�2 ðxprevÞ 6 � � � 6 d�n0 ðxprevÞ

holds. Then d�(xprev) is defined by
d�ðx prevÞ ¼ minfð1þ b�Þd�k0 ðxprevÞ; 1� e�g; k0 ¼ minfg; n0g; ð5Þ

where b� (> 0) and g (a positive integer) are program parameters. Since d�(xprev) is chosen so that
d�(xprev) < 1 holds and the initial values of pi ("i 2 M) are positive by definition (1), pi > 0 holds for all
i 2 M during the search.

This value of d+(xprev) is chosen so that jfx0 2 NB2ðxprevÞ j pcostðx0Þ < pcostðxprevÞgjP 1 holds for the
new values of pi, and the value of d�(xprev) is basically chosen so that
jfj 2 N j Dpcostðxprev; fjgÞ < 0; xprev
j ¼ 1gjP k0
holds for the new values of pi (see Appendix E). By these rules, the search from xprev always moves to other
solutions after updating penalty weights. We set the above program parameter values to
eþ ¼ 0:05; e� ¼ 0:01; bþ ¼ 0:1; b� ¼ 0:1 and g ¼ 10
in our experiment, to ensure enough changes of penalty weights.
We judge by condition (2) whether the current penalty weights are large enough to obtain feasible solu-

tions or not. If (2) holds, we increase pi for all uncovered i 2 M, because there is a possibility of finding
feasible solutions which improve UB. Otherwise, even if penalty weights are increased, most solutions x
in NB3(xprev) with better pcost(xprev) will not satisfy cost(x) < UB. In this sense, solutions around xprev

are not promising. Therefore, we decrease pi for all i 2 M rather sharply to force the search away from
xprev. The algorithm to update the penalty weights pi is summarized in Fig. 6.
Fig. 6. Algorithm to update penalty weights.



484 M. Yagiura et al. / European Journal of Operational Research 172 (2006) 472–499
5. Heuristic reduction of problem sizes

In this section, we describe how to reduce the size of problem instances by heuristically fixing some vari-
ables xj to 0 or 1. This size reduction is applied many times, before starting the local search and during the
iterations of the local search. In other words, the set of fixed variables are modified dynamically by using
the information from the Lagrangian relaxation.

We define a set of indices N1 � N (respectively, N0 � N), such that variables xj, j 2 N1 (respectively, N0),
are fixed to 1 (respectively, 0), where N1 \ N0 = ;, and we let Nfree = N n(N0 [ N1) be the set of indices of
free variables. Given (N1, N0, Nfree), we define the following problem:
SCPðN 1;N 0;N freeÞ : minimize costðxÞ ¼
X

j2N free

cjxj

subject to
X

j2N free

aijxj P 1 8i 2 M such that
X
j2N1

aij ¼ 0

xj 2 f0; 1g 8j 2 N free:
The problem SCP(N1, N0, Nfree) is also an SCP, with variables xj, j 2 Nfree, whose size is smaller than the ori-
ginal instance. Redundant constraints i 2 M with

P
j2N1

aij P 1 are also removed in the reduced problem.
In Sections 5.1 and 5.2, we explain how to choose (N1, N0, Nfree). In Section 5.1, we consider the first

stage of fixing variables, which is applied before starting the local search. In Section 5.2, we consider the
adaptive modification of the fixed variables.

5.1. First stage of fixing variables

Before starting the local search, we choose a partition (N1, N0, Nfree). The choice of variables to be fixed is
based on the relative costs cj(u

+), where u+ is the Lagrangian multiplier vector obtained by the first call of
SUBGRADIENT(UB, u(0)). It is known that each subset Sj in an optimal solution of SCP tends to have a
small cj(u) value if a good Lagrangian multiplier vector u is used (e.g., [10]). Therefore, in our algorithm, we
choose Nfree to be the set of indices with small cj(u

+) values, and we then set N1 :¼ ; and N0 :¼ NnNfree. The
procedure is described in Fig. 7, where a (P1) and min free (a positive integer) are the program parameters
used to determine the size of Nfree. We set
a ¼ 3 and min free ¼ 100
in the computational experiments of Section 7.

5.2. Modification stage

After finishing some iterations of local search, we modify (N1, N0, Nfree) by first randomly choosing a new
set N1 and then using the information from the resulting Lagrangian relaxation of problem
Fig. 7. Algorithm for the first fixing.
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SCP(N1, N0, Nfree). The new set N1 is randomly chosen from those indices which are included in both the
incumbent solution (i.e., the best feasible solution obtained during the search so far) and the current solu-
tion. Since better solutions may exist around the incumbent solution, we choose N1 from the indices in-
cluded in the incumbent solution. The reason to restrict N1 to be included also in the current solution is
to resume the local search from the current solution. In this modification stage, some elements in N0 are
changed back to be free (i.e., N0 decreases monotonically during the modification algorithm).

Let x* be the incumbent solution, x be the current solution, and u+ be the Lagrangian multiplier vector
obtained by the first call of SUBGRADIENT(UB, u(0)). The procedure of modifying (N1, N0, Nfree) in this
stage is described in Fig. 8. In the algorithm, n (> 0) is a parameter used to determine the size of N1, where
we set
n ¼ 0:5
in the computational experiments of Section 7.
The frequency of calling MODIFY-FIXING(x*, x, u+, N1, N0, Nfree) has a large influence on the perfor-

mance of our algorithm. Calls to MODIFY-FIXING consume much computational time, but infrequent
applications may result in insufficient diversification of the search. We execute MODIFY-FIXING when-
ever both of the following two conditions are satisfied.

(1) The penalty weights are decreased by rule (4) in Section 4.
(2) The local search is iterated at least minitr-ls (a prespecified integer) times after the last call of MODIFY-

FIXING or after the incumbent solution x* is improved.

It is observed in a preliminary experiment that the performance is sensitive to the parameter value of
minitr ls and its appropriate values are
10–50 for instances with n ¼ 5000–10;000;

100–500 for instances with n ¼ 50;000–1;000;000:
Fig. 8. Algorithm to modify fixing.
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Based on these, we used
2 ht
minitr ls ¼ 100
in our experiment of Section 7.

5.3. Logical tests

Among well-known logical tests for reducing the size of an instance [5,15], we use the following simple
dominance rule:
If Sj1
� Sj2

and cj1
P cj2

; then we can fix xj1
:¼ 0: ð6Þ
Though the rule is simple, it is very expensive if we check the above dominance for all pairs of j1 and j2 in N.
We therefore use this in a limited way. When a j1 is to be added into Nfree in algorithm FIRST-FIXING or
MODIFY-FIXING, we check the condition of rule (6) for the j1 and all j2 already in N1 [ Nfree. If appro-
priately implemented, this check is possible in OðjSj1

jl0Þ time for a j1 and all j2 2 N1 [ Nfree, where
l0 ¼ maxf

P
j2N1[N free

aij j i 2 Mg.
6. Framework of the entire algorithm

The algorithm proposed in this paper consists of two phases, the phase of local search and the phase of
fixing variables, which are repeated alternately until a stopping criterion is satisfied. In the local search
phase, solutions in the neighborhood are searched according to the rules explained in Section 3. In the var-
iable fixing phase, some variables are fixed as explained in Section 5. The entire algorithm is described in
Fig. 9. In the algorithm, time-lim is a prespecified limit on the CPU time.

In this algorithm, Step 1 is the initialization, Steps 2 and 9 are the phase of fixing variables (Step 2 is the
first stage and Step 9 is the modification stage), and Steps 3–8 are the phase of local search with the adaptive
control of penalty weights. Parameter counter counts the number of local search iterations applied after the
incumbent solution x* is updated or the fixed variables are modified. Note that one iteration of local search
is defined to be the process of finding a solution whose pcost cannot be improved by Steps 4–6 (unless the
penalty weights are updated in Step 8).

Remark. Though it is not explicitly explained in the steps of Fig. 9, procedures 1-FLIP(x), 2-FLIP(x) and
3-FLIP(x) are applied to problem SCP(N1, N0, Nfree), and the Lagrangian multiplier vector u* obtained in
the last call of SUBGRADIENT (UB, u(0)) is used in procedures 1-FLIP(x) and 2-FLIP(x).
7. Computational experiment

Our algorithm 3-FNLS was evaluated using the benchmark instances obtained electronically from OR-
Library. 2 The algorithm was coded in C and run on a workstation Sun Ultra 2 Model 2300 (two Ultra
SPARC II 300 MHz processors with 1 GB memory), where the computation was executed on a single pro-
cessor. Test instances are explained in Section 7.1. In Section 7.2, the effect of neighborhood sizes is com-
pared. In Section 7.3, 3-FNLS is applied to small instances whose exact optimal values are known. In
Section 7.4, 3-FNLS is applied to instances called STS, which formulate difficult combinatorial problems.
tp://mscmga.ms.ic.ac.uk/jeb/orlib/scpinfo.html

http://www.netlib.org/benchmark/performance.ps


Fig. 9. The entire algorithm.
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We then compare 3-FNLS with other existing heuristic algorithms in Section 7.5 on problem instances of
Section 7.1.

7.1. Test instances

There are 13 types of benchmark instances called types 4, 5, 6, A, B, C, D, E, F, G, H, STS and RAIL.
The data of these instances are given in Table 1. Each of types 4 and 5 has 10 instances, each of types 6 and
A–H has five instances, type STS has four instances and type RAIL has seven instances. Types 4–6 and A–
H are randomly generated, where m ranges from 200 to 1000, n ranges from 1000 to 10,000, cj are random
integers from [1, 100], and the density

P
i2M

P
j2N aij=mn ranges from 0.02 to 0.2. For these random

instances, optimal solutions are known except for some instances of types E, G and H.
Type STS arose from Steiner triple systems and has regular features, such that cj = 1 for all j 2 N,P
j2N aij ¼ 3 for all i 2 M and jSj1

\ Sj2
j ¼ 1 for all j1 and j2 (j1 5 j2). STS instances can be generated recur-

sively from instances called A3 and A15, where the rule to generate A3y from an instance Ay is found in [18].
A135 and A243 were taken from OR-Library, and A405 and A729 were generated by ourselves from A135 and
A243, respectively. The perl script to generate large STS instances from existing STS instances is obtained
from our WWW site. 3 Because of its symmetry, all relative costs cj(u*) have the same value for an optimal
Lagrangian multiplier vector u*. Therefore the information from the Lagrangian relaxation is useless, and
type STS is known to be very difficult.

Type RAIL arose from the railway crew scheduling problem, and includes very large-scale instances,
where m ranges from 500 to 5000, n ranges from 50,000 to 1,000,000, cj are 1 or 2 and the nonzero density
3 http://www-or.amp.i.kyoto-u.ac.jp/~yagiura/scp/stcp/

http://www.netlib.org/benchmark/performance.ps


Table 1
Details of the test instances

Instance m n Density (%) Cost range

Type 4 200 1000 2 [1, 100]
Type 5 200 2000 2 [1, 100]
Type 6 200 1000 5 [1, 100]
Type A 300 3000 2 [1, 100]
Type B 300 3000 5 [1, 100]
Type C 400 4000 2 [1, 100]
Type D 400 4000 5 [1, 100]
Type E 500 5000 10 [1, 100]
Type F 500 5000 20 [1, 100]
Type G 1000 10000 2 [1, 100]
Type H 1000 10000 5 [1, 100]

STS A135 3015 135 2.2 [1, 1]
STS A243 9801 243 1.2 [1, 1]
STS A405 27270 405 0.7 [1, 1]
STS A729 88452 729 0.4 [1, 1]

RAIL 507 507 63009 1.2 [1, 2]
RAIL 516 516 47311 1.3 [1, 2]
RAIL 582 582 55515 1.2 [1, 2]
RAIL 2536 2536 1081841 0.4 [1, 2]
RAIL 2586 2586 920683 0.4 [1, 2]
RAIL 4284 4284 1092610 0.2 [1, 2]
RAIL 4872 4872 968672 0.2 [1, 2]
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of coefficients is very low. To the best of our knowledge, optimal solutions are not known for any of RAIL
instances except for RAIL 507–582.

7.2. Effect of the neighborhood sizes

In this section, to examine the effect of neighborhood sizes, we applied our algorithm of Section 6 with
restricted neighborhoods NBr(x), r = 1, 2, 3, respectively, on types E, F, G, H and RAIL. Each instance was
solved ten times using different random seeds. Results are shown in Table 2. For each instance, Min, Avg
and Max are the minimum, average and maximum values, respectively, of the solutions obtained in 10 runs.
Time limits time lim of three algorithms with NBr for all r = 1, 2, 3 are set to 180 seconds for types E–H,
600 seconds for RAIL 507, 516 and 582, and 18,000 s for RAIL 2536–4872. The mark �*� indicates the
minimum of the average value among the three algorithms.

From the table, we can observe that the 3-flip neighborhood is more effective than the 1- and 2-flip neigh-
borhoods. The algorithm with NB3 obtained the best results for all instances except for three instances of
type H. It also obtained the best known solutions in all of the ten runs for 19 out of 27 instances. For types
E, F, G and H, the effect of neighborhood sizes is small, and the minimum values of NB2 and NB3 are the
same. For this reason, it seems that types E–H are too easy to compare the effectiveness of neighborhood
sizes. On the other hand, the difference in solution quality is very large between NB2 and NB3 for type
RAIL instances, which are much larger than others.

7.3. Results for small instances

We tested algorithm 3-FNLS on small instances of types 4–6 and A–D, whose optimal solutions are
known. Each instance was solved ten times, and the minimum, average and maximum time spent to obtain



Table 2
Comparison of different sizes of neighborhood

Instance NB1(x) NB2(x) NB3(x)

Min Avg Max Min Avg Max Min Avg Max

E1 29 *29.0 29 29 *29.0 29 29 *29.0 29
E2 30 30.1 30 30 30.3 31 30 *30.0 30
E3 27 *27.0 27 27 *27.0 27 27 *27.0 27
E4 28 *28.0 28 28 *28.0 28 28 *28.0 28
E5 28 *28.0 28 28 *28.0 28 28 *28.0 28

F1 14 *14.0 14 14 *14.0 14 14 *14.0 14
F2 15 *15.0 15 15 *15.0 15 15 *15.0 15
F3 14 *14.0 14 14 *14.0 14 14 *14.0 14
F4 14 *14.0 14 14 *14.0 14 14 *14.0 14
F5 13 13.2 14 13 13.2 14 13 *13.0 13

G1 176 *176.0 176 176 *176.0 176 176 *176.0 176
G2 155 155.0 155 154 154.4 155 154 *154.0 154
G3 167 167.8 169 167 167.2 168 166 *166.0 166
G4 170 170.6 172 168 168.6 170 168 *168.0 168
G5 168 *168.0 168 168 168.1 169 168 *168.0 168

H1 64 64.0 64 63 63.7 64 63 *63.0 63
H2 63 63.3 64 63 *63.0 63 63 63.3 64
H3 59 59.9 61 59 *59.2 60 59 59.9 60
H4 58 *58.0 58 58 *58.0 58 58 *58.0 58
H5 55 *55.0 55 55 *55.0 55 55 55.4 56

RAIL 507 175 175.5 176 175 175.0 175 174 *174.3 175
RAIL 516 182 182.2 183 182 *182.0 182 182 *182.0 182
RAIL 582 211 211.1 212 211 *211.0 211 211 *211.0 211
RAIL 2536 691 692.4 694 691 691.4 692 691 *691.1 692
RAIL 2586 955 957.9 962 949 950.2 952 945 *946.9 948
RAIL 4284 1075 1079.5 1083 1066 1068.9 1071 1064 *1065.7 1066
RAIL 4872 1543 1546.5 1550 1533 1535.8 1539 1528 *1531.8 1534
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these optimal solutions are shown in Table 3. We can observe that the optimal solutions are obtained by 3-
FNLS within a few seconds for all tested instances.

7.4. Results for STS instances

Algorithm 3-FNLS was applied to instances of type STS, whose optimal solutions are not known yet.
For A135 and A243, the best values reported in [22,25] are 103 and 198, respectively, and for A405 and
A729, the best values reported in [25] are 337 and 617, respectively. We solved each instance ten times using
different random seeds, and results are shown in Table 4. For each instance, the number of runs in which
the best solution is found (#Min), and the minimum (Min) and maximum (Max) of the objective values are
shown. Time limits time-lim are set to 1800 seconds for instances A135 and A243, and 3600 seconds for in-
stances A405 and A729. Notably, a solution with cost 336 was found for A405, which improves on the result
reported in [25].

7.5. Comparison with other algorithms

Algorithm 3-FNLS was then compared with the reported results of four existing heuristic algo-
rithms for SCP: (1) simulated annealing by Brusco, Jacobs and Thompson (denoted BJT)



Table 3
Computational time in seconds for 3-FNLS to find optimal solutions for small instances

Instance Opt Time (seconds)

Min Avg Max

4.1 429 1.1 1.10 1.1
4.2 512 0.5 0.50 0.5
4.3 516 0.5 0.50 0.5
4.4 494 1.1 1.10 1.1
4.5 512 0.6 0.60 0.6
4.6 560 1.1 1.10 1.1
4.7 430 1.2 1.20 1.2
4.8 492 1.3 1.30 1.3
4.9 641 1.2 1.20 1.2
4.10 514 1.1 1.10 1.1

5.1 253 1.2 1.40 1.7
5.2 302 1.5 1.56 1.9
5.3 226 1.0 1.00 1.0
5.4 242 1.3 1.32 1.4
5.5 211 1.0 1.00 1.0
5.6 213 1.1 1.10 1.1
5.7 293 1.2 1.26 1.4
5.8 288 1.2 1.20 1.2
5.9 279 1.2 1.21 1.3
5.10 265 1.1 1.10 1.1

6.1 138 1.6 1.60 1.6
6.2 146 1.4 1.45 1.7
6.3 145 1.4 1.40 1.4
6.4 131 1.9 1.90 1.9
6.5 161 1.4 1.54 1.9

A1 253 1.9 3.45 16.6
A2 252 1.9 2.03 2.4
A3 232 1.8 2.53 3.1
A4 234 2.1 2.25 2.5
A5 236 2.5 2.60 2.9

B1 69 2.5 2.53 2.6
B2 76 2.2 2.31 2.6
B3 80 2.7 2.85 3.8
B4 79 2.3 2.43 2.7
B5 72 2.7 2.80 2.9

C1 227 2.9 3.01 3.4
C2 219 2.9 2.91 3.0
C3 243 2.5 4.75 6.8
C4 219 2.9 3.34 4.1
C5 215 2.8 2.83 3.0

D1 60 3.4 3.49 3.7
D2 66 3.3 3.30 3.3
D3 72 3.8 4.11 4.9
D4 62 3.2 3.26 3.4
D5 61 3.8 3.89 4.1
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Table 5
Comparison with other algorithms

Instance LB Best-known BJT BC CNS CFT 3-FNLS (10 runs)

Min Avg Max #BorE

E1 29 29 *29 *29 – *29 29 *29.0 29 10/10
E2 28 30 *30 *30 – *30 30 *30.0 30 10/10
E3 27 27 *27 *27 – *27 27 *27.0 27 10/10
E4 28 28 *28 *28 – *28 28 *28.0 28 10/10
E5 28 28 *28 *28 – *28 28 *28.0 28 10/10

F1 14 14 *14 *14 – *14 14 *14.0 14 10/10
F2 15 15 *15 *15 – *15 15 *15.0 15 10/10
F3 14 14 *14 *14 – *14 14 *14.0 14 10/10
F4 14 14 *14 *14 – *14 14 *14.0 14 10/10
F5 13 13 *13 *13 – *13 13 *13.0 13 10/10

G1 165 176 *176 *176 *176 *176 176 *176.0 176 10/10
G2 147 154 155 155 155 *154 154 *154.0 154 10/10
G3 153 166 *166 *166 167 *166 166 *166.0 166 10/10
G4 154 168 *168 *168 170 *168 168 *168.0 168 10/10
G5 153 168 *168 *168 169 *168 168 *168.0 168 10/10

H1 52 63 64 64 64 *63 63 *63.0 63 10/10
H2 52 63 *63 64 64 *63 63 63.3 64 7/10
H3 48 59 *59 *59 60 *59 59 59.9 60 1/10
H4 47 58 *58 *58 59 *58 58 *58.0 58 10/10
H5 46 55 *55 *55 *55 *55 55 55.4 56 6/10

BJT: simulated annealing by Brusco, Jacobs and Thompson [9]; BC: genetic algorithm by Beasley and Chu [7]; CNS: Lagrangian-based
heuristic by Ceria, Nobili and Sassano [11]; CFT: Lagrangian-based heuristic by Caprara, Fischetti and Toth [10].

Table 4
Results for type STS

Instance Best-known in [22,25] #Min Min Max

A135 103 2 103 104
A243 198 8 198 203
A405 337 4 336 339
A729 617 1 617 646
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[9], 4 (2) genetic algorithm by Beasley and Chu (denoted BC) [7], (3) Lagrangian-based heuristic by Ceria,
Nobili and Sassano (denoted CNS) [11], and (4) Lagrangian-based heuristic by Caprara, Fischetti and Toth
(denoted CFT) [10]. BJT and BC were applied to types E–H, CNS was applied to types G, H and RAIL,
and CFT was applied to types E–H and RAIL. Tables 5 and 6 show the best solutions obtained by these
algorithms.

Each instance was then solved ten times by 3-FNLS from different random seeds. In Tables 5 and 6,
Min, Avg and Max are the minimum, average and maximum values of the solutions obtained in the ten
runs. Column �#BorE� (stands for �better or equivalent�) is the number of runs in which the previous
best-known solution or a better solution is found. The mark �—� means that the experimental results are
not reported and the mark �*� indicates the previous best known solution. For 3-FNLS, the meaning of
�*� is slightly different. An �*� is marked in column Avg and not in column Min, since column Min can
4 The results of two algorithms, called SAHNM and SAHWM, were reported in [9], but their results were the same for all instances
if we take the best of ten runs.



Table 6
Comparison with other algorithms

Instance LB Best-known Time limita CNS CFT 3-FNLS (10 runs)

Min Avg Max #BorE

RAIL 507 174 174 30b 175c 176 177.2 178 0/10
180 *174 174 175.1 176 1/10
300 174 174.8 175 2/10
600 174 174.3 175 7/10

RAIL 516 182 182 30b *182 *182 184 184.7 186 0/10
180 182 182.1 183 9/10
300 182 182.1 183 9/10
600 182 *182.0 182 10/10

RAIL 582 211 211 30b *211 211 *211.0 211 10/10
180 *211

RAIL 2536 685 690d 1800 *691 695 702.3 716 0/10
(prev. best known: 691) 3600b 692 *691 691 692.1 694 3/10

7200 691 691.2 692 8/10
18000 691 691.1 692 9/10

180000 691e

RAIL 2586 937 945f 1800 951 948 949 951.3 952 0/10
(prev. best known: 947) 3600b 948g 947 949.2 951 2/10

7200 946 947.4 949 6/10
18000 945 *946.9 948 7/10

180000 946e

RAIL 4284 1054 1064f 1800 1069h 1072 1073.8 1076 0/10
(prev. best known: 1065) 3600b 1070 *1065 1068 1069.5 1071 0/10

7200 1066 1067.3 1069 0/10
18000 1064 1065.7 1066 2/10

180000 1064e

RAIL 4872 1509 1528f 1800 *1534 *1534 1537 1542.0 1545 0/10
(prev. best known: 1534) 3600b *1534 1534 1536.5 1540 1/10

7200 1532 *1533.5 1535 8/10
18000 1528 *1531.8 1534 10/10

180000 1532e

CNS: Lagrangian-based heuristic by Ceria et al. [11]; CFT: Lagrangian-based heuristic by Caprara et al. [10].
a Time limit for 3-FNLS is for ‘‘each’’ run.
b The time limit roughly equivalent to (or slightly larger than) the one for the FASTER competition [10,11], which CNS and CFT

took part in. That is, 3,000 seconds for RAIL 507, 516 and 582 on a PC486/33, 4 MB memory, and 10,000 seconds for RAIL 2536–
4872 on an HP735, 125 MHz, 256 MB memory.

c The solution with cost 174 was found by CFT with an ad hoc tuning.
d The solution with cost 690 was found by 3-FNLS after parameter tuning.
e The result with a longer time limit of about 500,000 CPU seconds on HP735/125, which is provided by the authors of [10].
f Best-known costs 947, 1065 and 1534 in [10] (those in the parentheses) are updated to 945, 1064 and 1528, respectively, by using 3-

FNLS.
g The solution with cost 947 was found by CFT with an ad hoc tuning.
h The solution with cost 1069 was found by CFT at an earlier stage, and the result with this time limit is not available.
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be understood as the results after spending �10 · time-lim� CPU seconds and may not be fair. The mark �*� is
added if the average value is better than or equal to the previous best known solution, which means the
previous best known solution is newly updated by 3-FNLS, or 3-FNLS gives the best known solution in
all of the ten runs. We also show the lower bound (denoted LB) obtained from the Lagrangian dual prob-



Table 7
Performance comparison of different computers

Machine SPECint95 Mflop/s Estimate

Sun Ultra SPARC II, 300 MHz 12.3 1
Sun Ultra SPARC II, 336 MHz 154 1.12
Pentium 100 MHz 3.16–3.33 0.26
SGI R4000, 100 MHz 15 0.1
IBM RS/6000 375, 62.5 MHz 26 0.19
DECstation 5000/240 5.3 0.04
PC486, 33 MHz 0.94 0.007
HP 9000 Series 700 Model 735, 125 MHz 4.04 0.33
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lem solved by the subgradient method or from [10] (a better value of these two is exhibited). For instances
RAIL 507 and RAIL 582, the optimal values are obtained by CPLEX6.5.

Time limit time-lim for each run of our algorithm is set to 180 seconds for types E–H, and various time
limits are examined for RAIL instances. Time limits and computers used for other four algorithms are gi-
ven as follows:

BJT 10 runs with 60 (respectively, 240) seconds for types E and F (respectively, G and H) on a PC with
Pentium 100 MHz.

BC 10 runs on a Silicon Graphics Indigo R4000, 100 MHz. Time limits were not given, but the average
execution times were 2500–4500 seconds.

CNS 1000 seconds for types G and H and RAIL 507 and 582, and 10,000 seconds for RAIL 2586 and
4872 on an IBM RS/6000 375, 32 MB memory. 3000 seconds for RAIL 516 on a PC486/66, 16 MB
memory. 10,000 seconds for RAIL 2536 and 4284 on an HP735, 125 MHz, 256 MB memory.

CFT 5000 seconds for types E–H on DECstation 5000/240. 3000 seconds for RAIL 507, 516 and 582 on
a PC486/33, 4 MB memory. 10,000 seconds for RAIL 2536–4872 on an HP735, 125 MHz, 256 MB
memory.

We give in Table 7 rough comparison of machines, Sun Ultra 2 Model 2300 UltraSPARC II 300 MHz,
Pentium 100 MHz, Silicon Graphics Indigo R4000 100 MHz, IBM RS/6000 375 62.5 MHz, DECstation
5000/240, PC486/33, HP735 125 MHz 256 MB memory. Table 7 shows benchmark values of SPECint95
and Mflop/s. The values of SPECint95 are taken from the WWW site of SPEC (Standard Performance
Evaluation Corporation), 5 and Mflop/s are the values of LINPACK benchmark in [12]. Based on these,
we give rough estimates on machine speeds in the column �estimate�, where the speed of Sun Ultra 2 is nor-
malized to one, and a larger value means that the computer is faster. The results of CNS and CFT in Table
6 are exhibited estimating their time limits according to Table 7.

From Table 5, we can observe that our algorithm 3-FNLS obtained the best known solutions in all of ten
runs for all the tested instances except for H2, H3 and H5. For H2, H3 and H5, the number of runs in which
the best known solution was found was 7, 1 and 6, respectively. Among other algorithms, CFT is consid-
ered to be the best with respect to the solution quality. Compared with CFT, the time limit of 3-FNLS is
similar for type E–H.

From Table 6, we can observe that the solution quality of 3-FNLS is not very good if time-lim is short,
while algorithms CNS and CFT obtained very good solutions already in early stage. Based on these, we
should conclude that algorithm CFT is the best if the time limit is short. However, when a longer time limit
is allowed, #BorE becomes closer to 10 except for RAIL 4284, and 3-FNLS could improve the previous
5 http://www.specbench.org/

http://www.netlib.org/benchmark/performance.ps
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best known solutions for large instances. We asked the authors of [10] to run algorithm CFT with a very
long time limit, which is approximately equivalent to 180,000 seconds on our computer. The results in col-
umn Min of algorithm 3-FNLS (achieved after 18000 seconds · 10 runs) are better than or equivalent to
their results though the improvement is small. This comparison may not be fair as algorithm CFT is not
designed for such a long time limit and comparing computation time on different computers is not easy;
however, it indicates that the new best known values are not very easy to find even with long computation
time. The speed of computers is growing rapidly (e.g., a PC with Pentium 4 (3 GHz) is about 10 times faster
than the Sun Ultra 2), and hence we believe that algorithm 3-FNLS is worth existing.
8. Conclusion

In this paper, we proposed a local search algorithm, which is based on the 3-flip neighborhood (3-
FNLS), for the set covering problem. It contains an efficient implementation of the neighborhood search,
realized by reducing the neighborhood size without sacrificing the solution quality. We also incorporate the
strategic oscillation mechanism based on the adaptive control of penalty weights, and the size reduction
approach by using the information from Lagrangian relaxation.

Computational results show that the 3-flip neighborhood is effective to obtain better solutions than those
obtained by 1-flip and 2-flip neighborhoods, which are commonly used in existing algorithms. Comparisons
with other existing heuristic algorithms revealed that 3-FNLS obtained the best values for all the tested
instances, and improved the best known values for some of the large-scale RAIL instances.
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Appendix A. Proof of Lemma 1

We show that Dpcost(x, {j1, j2}) P 0 holds if xj1
¼ xj2

. First, we consider the case of xj1
¼ xj2

¼ 1. By the
assumption in the lemma
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Next, we consider the case of xj1
¼ xj2

¼ 0. By the assumptionX

Dpcostðx ; fjgÞ ¼ cj �

i2Sj

pih
ð0Þ
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Appendix B. Proof of Lemma 2

We assume xj1
¼ 1 and xj2

¼ 0 without loss of generality. By the assumption in the lemma, we have the
following inequalities:
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Hence we have
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Appendix C. Proof of Lemma 3

We show that Dpcost(x, {j1, j2, j3}) P 0 holds if xj1
¼ xj2

¼ xj3
. By symmetry, this will prove Lemma 3.

First, we consider the case of xj1
¼ xj2

¼ xj3
¼ 1. By the assumption in the lemmaX
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Next, we consider the case of xj1
¼ xj2

¼ xj3
¼ 0. By the assumption
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Appendix D. Proof of Lemma 4

First, we consider the case of xj1
¼ xj3

¼ 1 and xj2
¼ 0. By the assumption in the lemma, we have the
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Next, we consider the case of xj1
¼ 1 and xj2
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¼ 0. By the assumption in the lemma, we have the
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Appendix E. Step size of adjusting penalty weights

In this section, we show that the value of d+(xprev) is chosen so that jfx0 2 NB2ðxprevÞjpcostðx0Þ <
pcostðxprevÞgjP 1 holds for the new values of pi, and the value of d�(xprev) is chosen so that
jfj 2 N j Dpcostðxprev; fjgÞ < 0; xprev

j ¼ 1gjP k0 holds for the new values of pi, if d�k0 ðxprevÞ < 1� e� holds.
To clarify the argument, we denote the change in pcost under the vector p of penalty weight as
Dpcost(xprev, {j}, p).

Case 1 (Condition (2). holds and the penalty weights are increased by (3)): For a parameter d+ (> 0), let
p0i ¼ pið1þ hð0Þi ðxprevÞdþÞ. First we consider the 1-flip neighborhood. For j 2 N such that xprev

j ¼ 0, we have
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Even with the rules in Section 3.3, D pcost(xprev, {j}, p) P 0 holds for all j 2N with xprev
j ¼ 0 by condition

(2). Hence we have
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By the definition, dþNB1
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nSj2

pih
ð1Þ
i ðxprevÞ � dþ

X
i2Sj2

pih
ð0Þ
i ðxprevÞ

¼ Dpcostðxprev; fj1; j2g; pÞ � dþ
X
i2Sj2

pih
ð0Þ
i ðxprevÞ:
Therefore
Dpcostðx prev; fj1; j2g; p0Þ < 0()
X
i2Sj2

pih
ð0Þ
i ðxprevÞ > 0 and dþ >

Dpcostðxprev; fj1; j2g; pÞP
i2Sj2

pih
ð0Þ
i ðxprevÞ
holds provided Dpcost(xprev, {j1, j2}, p) P 0. By the definition, dþNB2
ðxprevÞ is the infimum of such d+.

Case 2 (Condition (2) does not hold and the penalty weights are decreased by (4)): For a parameter d�

(> 0), let p0i ¼ pið1� d�Þ. For j 2 N such that xprev
j ¼ 1, we have
Dpcostðx prev; fjg; p0Þ ¼ �cj þ
X
i2Sj

p0ih
ð1Þ
i ðxprevÞ ¼ �cj þ

X
i2Sj

pih
ð1Þ
i ðxprevÞ � d�

X
i2Sj

pih
ð1Þ
i ðxprevÞ

¼ Dpcostðxprev; fjg; pÞ � d�
X
i2Sj

pih
ð1Þ
i ðxprevÞ:
As Dpcost(xprev,{j}, p) P 0 holds for all j 2 N with xprev
j ¼ 1, we have

P
i2Sj

pih
ð1Þ
i ðxprevÞ > 0, and have
Dpcostðx prev; fjg; p0Þ < 0() d� >
Dpcostðxprev; fjg; pÞP

i2Sj

pih
ð1Þ
i ðxprevÞ

:

The parameters b+, b�, e+ and e� are used to ensure the strict inequality except for the rule in (5). In case
d�k0 ðxprevÞP 1� e� holds (which will not happen in normal situations), d�(xprev) is enforced to be 1 � e�

and the above property does not hold.
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